DBOS

Time Travel Queries
with Postgres

Qian Li
Co-Founder @DBOS, Inc

Twitter: @qgianl_cs
LinkedIn: gianli-dev
Email: gian.li@dbos.dev

© 2024 dbos.dev

DBOS

Once Upon a Time...

Looking Back at Postgres

Joseph M. Hellerstein
hellerstein@berkeley.edu

ABSTRACT

This is a recollection of the UC Berkeley Postgres project, which
was led by Mike Stonebraker from the mid-1980’s to the mid-1990’s.

The article was solicited for Stonebraker’s Turing Award book [Bro19],

as one of many personal/historical recollections. As a result it fo-
cuses on Stonebraker’s design ideas and leadership. But Stonebraker
was never a coder, and he stayed out of the way of his development
team. The Postgres codebase was the work of a team of brilliant stu-
dents and the occasional university “staff programmers” who had
little more experience (and only slightly more compensation) than
the students. I was lucky to join that team as a student during the
latter years of the project. I got helpful input on this writeup from
some of the more senior students on the project, but any errors or
omissions are mine. If you spot any such, please contact me and I
will try to fix them.

"n

etc" "efficient spatial searching" "complex integrity constraints" and
"design hierarchies and multiple representations” of the same phys-
ical constructions [SRG83]. Based on motivations such as these, the
group started work on indexing (including Guttman’s influential
R-trees for spatial indexing [Gut84], and on adding Abstract Data
Types (ADTs) to a relational database system. ADTs were a pop-
ular new programming language construct at the time, pioneered
by subsequent Turing Award winner Barbara Liskov and explored
in database application programming by Stonebraker’s new collab-
orator, Larry Rowe. In a paper in SIGMOD Record in 1983 [OFS83],
Stonebraker and students James Ong and Dennis Fogg describe an
exploration of this idea as an extension to Ingres called ADT-Ingres,
which included many of the representational ideas that were ex-
plored more deeply—and with more system support—in Postgres.

"

© 2024 dbos.dev

DBOS

...They Didn’t Live Happily Ever After

Time travel is deprecated: The remaining text in this section is retained only until it can
be rewritten in the context of new techniques to accomplish the same purpose.
Volunteers? - thomas 1998-01-12

© 2024 dbos.dev 3

DBOS

© 2024 dbos.dev

XX « > £ widget-store

@ PROBLEMS (18 OUTPUT DEBUG CONSOLE TERMINAL COMMENTS
> v TERMINAL

/Q 9 widget_store=> select product, inventory from products;
product | inventory

g& Premium Quality Widget | 92
(1 row)

widget_store=> DBOS TS "2024-09-30T16:30:00-04:00";
widget_store=> select product, inventory from products;
product | inventory

&4

Premium Quality Widget | 93
(1 row)

5

widget_store=> DBOS TS "2024-09-30T16:20:00-04:00";
widget_store=> select product, inventory from products;
product | inventory

&

Premium Quality Widget | 98
(1 row)

widget_store=> |j

& ©

X ®0A0MD18 WO & Local Debug (widget-store) v &£ Select Postgres Server

0D & D 08
v X
L
)%t DBOS Debug...
¥ node Task

} Time Travel
Audit

D A 7Spell & Prettier [

DBOS

Time Travel Is Useful

e Periodic reporting

e Auditing

e Debugging

e Regulatory Compliance (GDPR, CCPA, ...)
e Recovery

© 2024 dbos.dev

DBOS

Many Existing Implementations

© 2024 dbos.dev

0S ‘

Example 41.4. A PL/pgSQL Trigger Function for Auditing

This example trigger ensures that any insert, update or delete of a row in the emp table is recorded (i.e.,
audited) in the emp_audit table. The current time and user name are stamped into the row, together
with the type of operation performed on it.

CREATE TABLE emp (
empname text NOT NULL,

salary integer
);

CREATE TABLE emp_audit(

operation char(1) NOT NULL,
stamp timestamp NOT NULL,
userid text NOT NULL,
empname text NOT NULL,
salary integer

);

CREATE OR REPLACE FUNCTION process_emp_audit() RETURNS TRIGGER AS emp_audit

BEGIN

log in

out

ould
t for
DLite
rt it.
kers’
ition

ning
e are
e or

bles,

we’re forced to make it ourselves.

© 2024 dbos.dev

DBOS

Why New Implementation?

© 2024 dbos.dev

Inserts
Deletes

[App Tables

W Updates f App History

J 'L Tables

|

App DB

DBOS

Why New Implementation?

e Store all past versions in the same app database

(@)

(@)

© 2024 dbos.dev

Performance impact
Hard to maintain

Inserts
Deletes

[App Tables

W Updates f App History

J 'L Tables

|

App DB

10

DBOS

DBOS Time Travel

e EXxport history data to a separate provenance DB

e Track changes per transaction

e Main idea: Logical replication + multi-versioning

[App Tables

~

WAL
Inserts
Deletes
Updates

J

App DB

© 2024 dbos.dev

Tables

p
| App History]

&

Provenance DB

1

DBOS

Benefits

e No impact on the app DB
e Safe schema migration
e Work with off-the-shelf/managed Postgres servers

e Bonus: Enable transaction debugging

WAL
Inserts
N Deletes -
Updates App Histor
[App Tables D > p$ables y]
J (G
App DB Provenance DB

© 2024 dbos.dev

DBOS

Main Components

e Multi-versioned WAL exporter
e Time travel proxy

e Time travel debugging

© 2024 dbos.dev

Multi-Versioned WAL Exporter

DBOS

Main Ildea

e Multi-versioned tables
o Capture all versions of each data record
o Capture the begin and end timestamp of each version

/
-

{ Multi-Versioned

History Tables

Provenance DB

© 2024 dbos.dev

DBOS

Main Ildea

e Multi-versioned tables

o Capture all versions of each data record

o Capture the begin and end timestamp of each version
e Write-Ahead Log (WAL) transformer

WAL
Inserts
Deletes
Updates

© 2024 dbos.dev

WAL
Transformer

Ve

-

|

Multi-Versioned
History Tables

Provenance DB

16

DBOS

Multi-Versioned History Tables

e Use transaction ID as the logical timestamp

e Extend each table with two columns
o begin_xid: added the record
o end xid: deleted or updated the record with a new version

e Each version is visible between begin_xid and end_xid

© 2024 dbos.dev

17

DBOS

Example

App Table: Current data Widget Store
product inventory
Premium Quality Widget 98

Provenance Table: History data

Premium Quality Widget — Only 98

product inventory begin_xid end_xid ot
Premium Quality Widget 100 24818 24824

Enhance your productivity with our top-rated widgets!
Premium Quality Widget 99 24824 24826

Premium Quality Widget 98 24826 o0 Buy Now for $99.99

© 2024 dbos.dev 18

DBOS

Example

App Table: Current data Widget Store
product inventory
Premium Quality Widget 98

How?

Provenance Table: History data

Premium Quality Widget — Only 98

product inventory begin_xid end_xid ot
Premium Quality Widget 100 24818 24824

Enhance your productivity with our top-rated widgets!
Premium Quality Widget 99 24824 24826

Premium Quality Widget 98 24826 o0 Buy Now for $99.99

© 2024 dbos.dev 19

DBOS

Example

App Table: Current data Widget Store
product inventory
Premium Quality Widget 98

WAL to the rescue!

Provenance Table: History data

Premium Quality Widget — Only 98

product inventory begin_xid end_xid ot
Premium Quality Widget 100 24818 24824

Enhance your productivity with our top-rated widgets!
Premium Quality Widget 99 24824 24826

Premium Quality Widget 98 24826 o0 Buy Now for $99.99

© 2024 dbos.dev 20

DBOS

Write-Ahead Log (WAL)

e WAL describes data changes

e Logical decoding (e.g., wal2json) converts WAL to a readable format

e Example:

© 2024 dbos.dev

f

"xid": "24818",

"kind": "insert",

"schema": "public",

"table": "products"”,

"columnnames”: ["product"”, "inventory"],
"columntypes”: ["text", "integer"],
"columnvalues": ["Premium Quality Widget"

, 100]

21

DBOS

WAL Transformer

e Think of an ETL pipeline

e Enhance WAL with version info and update provenance tables
o Records are append-only
o Only metadata can be modified

Ve

WAL -

Inserts WAL Multi-Versioned
Deletes Transformer History Tables
Updates

Provenance DB

© 2024 dbos.dev

DBOS

WAL Transformer: Insert

e For aninsert, append the new record to the table
o begin_xid set to the transaction ID
o end_xid to infinity (latest version)

e Example: add a new product

product inventory begin_xid end_xid

Premium Quality Widget 100 24818 00

© 2024 dbos.dev

23

DBOS

WAL Transformer: Delete

e For a delete, find the latest record (end_xid=oo)
o Update end_xid to the transaction ID

e Example: delete a product

product inventory begin_xid end_xid
Premium Quality Widget 100 24818 oo
product inventory begin_xid end_xid

Premium Quality Widget 100 24818 24824

© 2024 dbos.dev

24

DBOS

WAL Transformer: Update

e For an update, first perform a delete and then insert a new version

e Example: update a product’s inventory

product inventory begin_xid

end_xid

Premium Quality Widget 100 24818

00

{

product inventory begin_xid

end_xid

Premium Quality Widget 100 24818
Premium Quality Widget 99 24824

24824

o0

© 2024 dbos.dev

25

DBOS

Garbage Collection

e Bound the size of the provenance DB
e Retention policy
e Periodically remove old versions based on end_xid

© 2024 dbos.dev

26

DBOS

Garbage Collection

e Periodically remove old versions based on end_xid
e EXxample:

Garbage Collected l

24818 24824 24826

product inventory begin_xid end_xid
. - Cualib Widaot—100 24318 24824
Premium Quality Widget 99 24824 24826
Premium Quality Widget 98 24826 00

© 2024 dbos.dev

Time Travel Proxy

DBOS

Main Ildea

e Transform normal PostgreSQL queries to time traveled queries

e Read the visible version at any given point in time
o Only see the committed versions

© 2024 dbos.dev

29

DBOS

Visibility Rule

e A version is visible at a given timestamp T If:
o The begin xid is a transaction committed before T
o And the end_xid is not committed before T

© 2024 dbos.dev

30

DBOS

Visibility Rule

product, inventory

products;

24818 24824 24826
Committed t Not committed

product inventory begin_xid end_xid
Premium Quality Widget 100 24818 24824
Premium Quality Widget 99 24824 24826
Premium Quality Widget 98 24826 00

© 2024 dbos.dev

31

DBOS

Visibility Rule

product, inventory

products;

24818 24824 24826
Committed t Not committed

product inventory begin_xid end_xid
Premium Quality Widget 100 24818 24824
Premium Quality Widget 99 24824 24826
Premium Quality Widget 98 24826 00

© 2024 dbos.dev

32

DBOS

Visibility Rule

product, inventory

products;

24818 24824 24826
Committed t Not committed
product inventory begin_xid end_xid
Premium Quality Widget 100 24818 24824
Premium Quality Widget 99 24824 24826
Premium Quality Widget 98 24826 00

© 2024 dbos.dev

33

DBOS

Visibility Rule

product, inventory

products;

24818 24824 24826
Committed t Not committed
product inventory begin_xid end_xid
Premium Quality Widget 100 24818 24824
Premium Quality Widget 99 24824 24826
Premium Quality Widget 98 24826 00

© 2024 dbos.dev

34

DBOS

Visibility Rule

product, inventory

products;

24818 24824 24826
Committed t
product inventory begin_xid end_xid
Premium Quality Widget 100 24818 24824

Premium Quality Widget 99 24824 24826

Premium Quality Widget 98 24826 00

© 2024 dbos.dev

35

DBOS

Visibility Rule

product, inventory

products;

24818 24824 24826
Committed t
product inventory begin_xid end_xid
Premium Quality Widget 100 24818 24824

Premium Quality Widget 99 24824 24826

Premium Quality Widget 98 24826 00

© 2024 dbos.dev

36

DBOS

Which Transactions Have Committed?

e Use the PostgreSQL'’s snapshot info: pg_current_snapshot()
o xmin: transaction IDs < xmin are committed
o xmax: transation IDs >= xmax are not finished
o xip_list: between xmin and xmax but not committed

© 2024 dbos.dev

37

DBOS

Query Transformation

e Append two predicates to a query:

begin xid < xmax begin xid xip list

end xid >= xmax end xid = xip list

e First, select versions added by committed transactions
e Second, select versions not deleted by committed transactions

© 2024 dbos.dev

38

DBOS

Example

product, inventory

products;

24818

24824

24826

Committed

© 2024 dbos.dev

product, inventory

begin_xid < 24825

t Not committed

products

end xid >= 24825

39

DBOS

Example

product, inventory

products;

24818 24824 24826
Committed t Not committed
product inventory begin_xid end_xid
Premium Quality Widget 100 24818 24824
Premium Quality Widget 99 24824 24826
Premium Quality Widget 98 24826 00

© 2024 dbos.dev

40

DBOS

Implementation

e Implement a Postgres proxy, using 1ibpg query to parse and
transform queries

o Postgres wire-compatible
o Kudos to my amazing teammate Harry Pierson (@DevHawk)

e DBOS keeps track of the timestamp to snapshot mapping

© 2024 dbos.dev

41

Time Travel Debugging

DBOS

Replay Statements As Of a Past Transaction

BEGIN

UPDATE products SET inventory = 50 WHERE product LIKE ‘Premium%’
RETURNING product, inventory;

UPDATE products SET inventory
RETURNING product, inventory;

100 WHERE product = ‘Premium Widget’

COMMIT

© 2024 dbos.dev

DBOS

Challenges

e Can’t modify history data
e Require read-your-own-writes within a transaction

e WAL doesn’t track SQL statements
o Each statement may change multiple records
o Each record may be changed multiple times

© 2024 dbos.dev

44

DBOS

Main Ildea

e Proxy transforms insert/delete/update to select queries

e Keep track of which statement within the transaction made what

changes
o begin_seq: The statement ID that added the record

o end_seq: The statement ID that deleted the record

e Use PG triggers to record how many records are changed per

statement
o Emit WAL messages

© 2024 dbos.dev

45

XX « > £ widget-store D& 08
CHIDIGE I) AR |

@ D> Local Debucv $8% TS operations.ts s utilities.ts X JS debu‘\,_:..v..\.,v...,v M

v VARIABLES src > Ts utilities.ts > % ShopUtilities > @ subtractinventory > [@] numAffected
/O Vv Local: subtractinventory 49 const reportSes = (process.env['REPORT_EMAIL_TO_ADDRESS'] &&

> ctxt = Transaction.. 42 : undefined;
gp numAffected = unde.. 43
e L] 44 export class ShopUtilities {
S Block & Time Travel Debug I

ﬁ'z O 45 @Transaction()

v WATCH 46 static async subtractInventory(ctxt: KnexTransactionContext):

O Promise<void> @
B:' B 47 const numAffected = await ctxt.® D client<Product>('products').
where('product_id', PRODUCT_ID).® andWhere('inventory', '>=',
L3 1)
48 .update({
- 49 inventory: ctxt.client.raw('inventory - ?', 1)
v CALL STACK 50 b
v X Time .. RUNNING 51
© Tt PAUSED ONBR.. 52 if (numAffected <= 0) {
@ subtractInventory PROBLEMS . OUTPUT DEBUG CONSOLE TERMINAL COMMENTS e A X
subtractInventory > . TERMINAL ‘
$o3 wrappedTransaction ¢ 2924-99-30 20:33:14 [infol: Workflow executor initialized L et
______________ _ ’ Xt Time Travel ... ‘

DBOS

Try DBOS Time Travel

e Tutorial: https://docs.dbos.dev/cloud-tutorials/interactive-timetravel

e Case Study: https://www.dbos.dev/blog/database-time-travel

© 2024 dbos.dev

47

https://docs.dbos.dev/cloud-tutorials/interactive-timetravel
https://www.dbos.dev/blog/database-time-travel

DBOS

Summary

e EXxport history data to a separate provenance DB

e Leverage logical replication + multi-versioning

o No impact on the app DB

o Work with off-the-shelf/managed Postgres servers

o Bonus: Enable transaction debugging

[App Tables

|

WAL
Inserts
Deletes
Updates

)

App DB

© 2024 dbos.dev

f App History
'L Tables

Provenance DB

48

DBOS

Chat with Us!

e EXxport history data to a separate provenance DB

e Leverage logical replication + multi-versioning
o No impact on the app DB
o Work with off-the-shelf/managed Postgres servers
o Bonus: Enable transaction debugging

Qian Li Peter Kraft
Co-founder Co-founder SCAN ME

© 2024 dbos.dev

49

